Tuesday, September 23, 2008

Artificial Intelegent (AI)

Artificial intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it.

History of Artificial Intelligence research
History of artificial intelligence and timeline of artificial intelligence.
In the middle of the 20th century, a handful of scientists began a new approach to building intelligent machines, based on recent discoveries in neurology, a new mathematical theory of information, an understanding of control and stability called cybernetics, and above all, by the invention of the digital computer, a machine based on the abstract essence of mathematical reasoning.
The field of modern AI research was founded at conference on the campus of Dartmouth College in the summer of 1956. Those who attended would become the leaders of AI research for many decades, especially John McCarthy, Marvin Minsky, Allen Newell and Herbert Simon, who founded AI laboratories at MIT, CMU and Stanford. They and their students wrote programs that were, to most people, simply astonishing: computers were solving word problems in algebra, proving logical theorems and speaking English. By the middle 60s their research was heavily funded by the U.S. Department of Defense and they were optimistic about the future of the new field:
1965, H. A. Simon: "[M]achines will be capable, within twenty years, of doing any work a man can do"
1967, Marvin Minsky: "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved."
These predictions, and many like them, would not come true. They had failed to recognize the difficulty of some of the problems they faced. In 1974, in response to the criticism of England's Sir James Lighthill and ongoing pressure from Congress to fund more productive projects, the U.S. and British governments cut off all undirected, exploratory research in AI. This was the first AI Winter.
In the early 80s, AI research was revived by the commercial success of expert systems (a form of AI program that simulated the knowledge and analytical skills of one or more human experts). By 1985 the market for AI had reached more than a billion dollars and governments around the world poured money back into the field. However, just a few years later, beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into disrepute, and a second, more lasting AI Winter began.
In the 90s and early 21st century AI achieved its greatest successes, albeit somewhat behind the scenes. Artificial intelligence was adopted throughout the technology industry, providing the heavy lifting for logistics, data mining, medical diagnosis and many other areas. The success was due to several factors: the incredible power of computers today (see Moore's law), a greater emphasis on solving specific subproblems, the creation of new ties between AI and other fields working on similar problems, and above all a new commitment by researchers to solid mathematical methods and rigorous scientific standards.


Approaches to Artificial Intelligence
Artificial intelligence is a young science and there is still no established unifying theory. The field is fragmented and research communities have grown around different approaches.

The human brain provides inspiration for artificial intelligence researchers, however there is no consensus on how closely it should be simulated.
In the 40s and 50s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton and the Ratio Club in England.

Traditional symbolic
Artificial Intelligence
When access to digital computers became possible in the middle 1950s, AI research began to explore the possibility that human intelligence could be reduced to symbol manipulation. The research was centered in three institutions: CMU, Stanford and MIT, and each one developed its own style of research. John Haugeland named these approaches to AI "good old fashioned AI" or "GOFAI".

Cognitive simulation
Economist Herbert Simon and Alan Newell studied human problem solving skills and attempted to formalize them, and their work laid the foundations of the field of artificial intelligence, as well as cognitive science, operations research and management science. Their research team performed psychological experiments to demonstrate the similarities between human problem solving and the programs (such as their "General Problem Solver") they were developing. This tradition, centered at Carnegie Mellon University would eventually culminate in the development of the Soar architecture in the middle 80s.

Logical AI

Unlike Newell and Simon, John McCarthy felt that machines did not need to simulate human thought, but should instead try to find the essence of abstract reasoning and problem solving, regardless of whether people used the same algorithms. His laboratory at Stanford (SAIL) focused on using formal logic to solve a wide variety of problems, including knowledge representation, planning and learning. Logic was also focus of the work at the University of Edinburgh and elsewhere in Europe which led to the development of the programming language Prolog and the science of logic programming.

"Scruffy" symbolic AI

Researchers at MIT (such as Marvin Minsky and Seymour Papert) found that solving difficult problems in vision and natural language processing required ad-hoc solutions – they argued that there was no simple and general principle (like logic) that would capture all the aspects of intelligent behavior. Roger Schank described their "anti-logic" approaches as "scruffy" (as opposed to the "neat" paradigms at CMU and Stanford), and this still forms the basis of research into commonsense knowledge bases (such as Doug Lenat's Cyc) which must be built one complicated concept at a time.

Knowledge based
Artificial Intelligence
When computers with large memories became available around 1970, researchers from all three traditions began to build knowledge into AI applications. This "knowledge revolution" led to the development and deployment of expert systems (introduced by Edward Feigenbaum), the first truly successful form of AI software. The knowledge revolution was also driven by the realization that truly enormous amounts of knowledge would be required by many simple AI applications.

Sub-symbolic AI

During the 1960s, symbolic approaches had achieved great success at simulating high-level thinking in small demonstration programs. Approaches based on cybernetics or neural networks were abandoned or pushed into the background. By the 1980s, however, progress in symbolic AI seemed to stall and many believed that symbolic systems would never be able to imitate all the processes of human cognition, especially perception, robotics, learning and pattern recognition. A number of researchers began to look into "sub-symbolic" approaches to specific AI problems.
Bottom-up, situated, behavior based or nouvelle AI
Researchers from the related field of robotics, such as Rodney Brooks, rejected symbolic AI and focussed on the basic engineering problems that would allow robots to move and survive. Their work revived the non-symbolic viewpoint of the early cybernetics researchers of the 50s and reintroduced the use of control theory in AI. These approaches are also conceptually related to the embodied mind thesis.

Computational Intelligence
Interest in neural networks and "connectionism" was revived by David Rumelhart and others in the middle 1980s. These and other sub-symbolic approaches, such as fuzzy systems and evolutionary computation, are now studied collectively by the emerging discipline of computational intelligence.

Formalisation
In the 1990s, AI researchers developed sophisticated mathematical tools to solve specific subproblems. These tools are truly scientific, in the sense that their results are both measurable and verifiable, and they have been responsible for many of AI's recent successes. The shared mathematical language has also permitted a high level of collaboration with more established fields (like mathematics, economics or operations research). Russell & Norvig (2003) describe this movement as nothing less than a "revolution" and "the victory of the neats."

Intelligent agent paradigm

The "intelligent agent" paradigm became widely accepted during the 1990s. An intelligent agent is a system that perceives its environment and takes actions which maximizes its chances of success. The simplest intelligent agents are programs that solve specific problems. The most complicated intelligent agents are rational, thinking human beings. The paradigm gives researchers license to study isolated problems and find solutions that are both verifiable and useful, without agreeing on one single approach. An agent that solves a specific problem can use any approach that works — some agents are symbolic and logical, some are sub-symbolic neural networks and others may use new approaches. The paradigm also gives researchers a common language to communicate with other fields—such as decision theory and economics—that also use concepts of abstract agents.

Integrating the approaches

An agent architecture or cognitive architecture allows researchers to build more versatile and intelligent systems out of interacting intelligent agents in a multi-agent system. A system with both symbolic and sub-symbolic components is a hybrid intelligent system, and the study of such systems is artificial intelligence systems integration. A hierarchical control system provides a bridge between sub-symbolic AI at its lowest, reactive levels and traditional symbolic AI at its highest levels, where relaxed time constraints permit planning and world modelling. Rodney Brooks' subsumption architecture was an early proposal for such a hierarchical system.
(http://en.wikipedia.org/wiki/Artificial_intelligence)

No comments: